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SAMPLING IN GEOGRAPHY. 
SYNOPSIS: - 

Geographers recognize the value of both extensive statistical sampling and intensive 
‘case-study’ sampling for exploring an uncertain world. A benefit of extensive 
sampling is that a set of techniques known as inferential statistics can be applied to 
make probabilistic statements about the population from which the sample is drawn. 
Sampling is therefore a powerful tool, but geographical research frequently engages 
with heterogeneous phenomena that require careful sampling in order to maximize the 
accuracy of conclusions. Thoughtful design of the sampling programme is therefore 
crucial and is driven by both the research aims and available resources. The chapter is 
organized into the following sections: 

 Introduction 
 Samples and case studies 
 What makes a good sample? 
 Designing a sampling programme 
 Statistical inference 
 Sample size 
 Conclusion 

 
 

INTRODUCTION: - 
 
Sampling is the acquisition of information about a relatively small 
part of a larger group or population, usually with the aim of making 
inferential generalizations about the larger group. Sampling is 
necessary because it is often not possible, practicable or desirable to 
obtain information from an entire population. For example, it is 
essentially impossible to measure all of the sand grains on a beach to 
ascertain their average size; impracticable, in the course of a normal 
day’s work, to question every person on the beach to determine the 
variety of their views about personal use of public spaces; and 
undesirable, never mind unethical, to stress the fish community of a 
seashore rock-pool by catching and examining all of its members. 
Moreover, in quantitative research, a set of procedures known as 
inferential statistics can be applied to sample data in order to make 
generalizations, validated by probability statements, about the entire 
population from which the sample was drawn. Thus, it is not 
necessary to interrogate a whole population to make useful 
generalizations about it. 



  
 

In one form or another, sampling is the basis of almost all 
empirical research   in both physical and human geography and is 
widely relied upon. However, such a powerful methodological tool 
comes with a set of health warnings: samples are only as valuable as 
they are representative of the larger population; at best, bad sampling 
leads to imprecision; at worst, bad sampling yields incorrect or 
preju-  diced results. In the extreme, lack of sampling rigour makes 
inferences meaning- less: ‘The tendency of the casual mind is to 
pick out or stumble upon a sample which supports or defies its 
prejudices, and then to make it the representative of     a whole class’ 
(Walter Lipman, journalist, 1929). This remark may be directed at 
the dangers of using isolated examples to make unfounded 
inferences in everyday life rather than in academic research, but it 
nicely highlights the important association of weak, non-rigorous 
sampling with bias and inaccuracy. 

This association, the difficulties that are frequently encountered in 
order to collect representative samples and the impenetrable nature 
of ‘stats’ for some students breed a scepticism about sampling and 
statistical inference that can run deep. It is fairly common to hear the 
dismissive statement ‘Well, you can prove anything with statistics.’ 
Benjamin Disraeli’s remark that ‘There are three types of lies: lies, 
damned lies and statistics’ has been a convenient aphorism of 
opposition politicians concerned with the scruples of their 
counterparts for over a century. This scepticism is, however, 
unfortunate because geographers often seek to under- stand spatially 
diverse, highly complex phenomena that can be efficiently accessed 
by sampling and usefully examined using statistical inference. 

While questions about motivation and affiliation (political, 
epistemological, etc.) have a place in the critical assessment of all 
research, for students of method the value of statistical inferences 
must be judged simply against the quality of the sample data and the 
quality of the analysis applied to them. These issues are the focus of 
this chapter.  It reviews the use of sampling by geographers; 
considers   the criteria by which samples should be judged; discusses 
the design and implementation of sampling schemes; introduces 
some of the basic elements of statistical inference; and suggest some 
methods for defining sample size. The overall message is that 
sampling is a powerful tool that most geographers need, but if 
research methodology aims to be as impartial and free of error as 
possible, then sampling must be done thoughtfully and rigorously. 

 



  
 

 
 

SAMPLES AND CASE STUDIES: - 
 

Not all geographers seek to make quantitatively robust inferences about large 
populations or develop theories and models of universal validity. Nevertheless, 
a principal aim of most, if not all, geographical research is to make useful 
generalizations – that is, to seek out and explain patterns, relations and fluxes 
that might help model, predict, retrodict, or otherwise understand better, the 
human and physical worlds around us. Thus, some geographers may restrict their 
attention to small areas, short periods of time, small groups or even to individual 
places or people, but the underlying approach remains nomothetic – it focuses 



  
 

on identifying the general rather than the unique, and in turn most geographical 
research involves some form of sampling. 

Geographical systems are complex and affected by historical and geographical 
contingencies, indeterminism or singularity (Schumm, 1991). That is, while there 
are general similarities between objects, there is also inexplicable (or at least, as yet 
unexplained) variation in any population, so that each item is a little different from 
the others. This means that while we may be able to develop generalizations that 
are valid for a whole population, estimating the behaviour or character of any single 
individual is difficult and prone to error. This is as relevant to predicting river dis- 
charge as it is to commenting on the global reach of large corporations or people’s 
views on street architecture. Thus, the geographical world is an uncertain world. 

Geographers have adopted a variety of strategies to search for general understand- 
ing while recognizing this uncertainty. A useful distinction can be made between 
approaches that intensively examine a small number of examples and those that 
sample extensively (Harvey, 1969; Richards, 1996). In the extreme, geographers 
have made substantial use of single case studies (samples of one) to learn about 
both physical and human phenomena. While case studies provide detailed infor- 
mation, a fundamental criticism of the approach is that the generality of the case is 
unknown. That is, there is no formal basis for substantiating inferences made about 
a population on the basis of a single sample, such that extrapolating the findings 
of the case to the population remains merely a matter of intuitive judgement on the 
part of the investigator. This is problematic, because most geographers would (and 
should) be sceptical of such subjectivity. In contrast, the collection of large, exten- 
sive samples provides the opportunity to utilize statistical methods which, at least 
when sampling is appropriately conducted, offer a means of assigning objectively 
derived conditional statements to population inferences. 

While recognizing the limitations of case studies and the benefits of statistical 
inference it is important not to denigrate the value of intensive investigations, not 
least because there is no single, simple model that defines how geographical 
knowledge can or should be obtained and ratified (see Chapters 16, 18 and 19). 
Case studies may not provide a basis for making wide-ranging inferences about     
a population but inferences based on case studies are not necessarily false or 
unreasonable. Rather, they stand to be substantiated and the detailed informa-   
tion gathered in a case study may reveal general structures or relations that can    
be used to generate or modify models or hypotheses (Harvey, 1969). Similarly, 
case studies may present unique opportunities for understanding the mechanisms 
that underlie empirical observations. In geomorphology, Richards (1996) argues 
that as long as the location of field sites is carefully planned, case studies offer 
important advantages over extensive approaches. This is because case studies 
provide an opportunity to ask fundamentally different questions in a fundamentally 
different way. Case studies often aim to explain the mechanisms that generate 
patterns observed in extensive studies (Blaut, 1959), and as such, case studies 
should not be judged by their representativeness (or lack thereof) but by the quality 
of the theoretical reasoning that they generate (Richards, 1996). Similar 
arguments, based on alternative views of generalization and theory validation, 
are used by qualitative researchers to explain the use of case studies (e.g. Miles 
and Huberman, 1994). 



  
 

While statistical theory guides sample collection in extensive approaches, the 
selection of case studies for intensive study is based on less well-established criteria. 
Richards (1996) highlights the importance of carefully selecting cases that have 
those properties which facilitate rigorous tests of the hypotheses under con- 
sideration, and meticulous definition of local conditions. Curtis et al. (2000) 
review case-selection criteria formulated for qualitative research which include 
ethical considerations and relevance to a theoretical framework.  Using exam- ples 
from medical geography, they find that it can be difficult to reconcile these two 
criteria such that ethical considerations are at odds with the selection of the most 
useful or theoretically relevant cases. 

The collection of information within a case study, especially in quantitative 
research, will typically require extensive sampling internally, albeit on relatively 
small temporal or spatial scales. If useful internal inferences are to be made, then 
this sampling must be rigorous and statistically accountable. In turn, as Richards 
(1996) points out, the practical distinction between ‘case studies’ and ‘extensive 
studies’ is somewhat fuzzy in geomorphology, and largely semantic.   In practice, 
many geographers are typically engaged in studies that shift between these two 
styles, using their complementary opportunities to explain geographical 
phenomena. The literature reviewed above provides a starting point for further 
consideration of case studies as a form of sampling. The remainder of this chapter 
focuses on extensive sampling and classical statistical inference. 

 

 
WHAT MAKES A GOOD SAMPLE? 

When sampling is used to make generalizations about a larger population, the aim 
of sampling is to obtain a ‘representative characterization’ of whichever aspects   
of the population one is interested in. Characteristics of a population are referred 
to as parameters, while those of a sample are called statistics. A good sample   
may then be defined as one that satisfies two criteria: it must provide an unbiased 
estimate of the parameter of interest, and it must provide a precise estimate of the 
parameter of interest. 

 

ACCURACY, PRECISION AND BIAS: - 
 
The very nature of sampling means that, in repeated sampling of the same popu- 
lation, different items (individuals, businesses, households, etc.) will be drawn. 
Thus, statistics vary between samples and, in each case, differ to a greater or 
lesser degree from the population parameters that they estimate. The difference 
between sample estimates and the true population value is referred to as the 
accuracy of the sample. Accuracy is gauged in terms of its two components: bias 
and precision. 

These terms can be illustrated by representing repeated sampling of a popula- 
tion by a darts competition in which each dart represents a single sample estimate 
and the bull’s eye represents the true population value (Figure 17.1). Bias refers to 



  
 

 

 
 

 
 

Figure 17.1 Precision and bias represented as a game of darts 
 

 
the systematic deviation of sample statistics from the true value. A set of sample 
statistics that vary around the true value without any discernible pattern is said to 
be unbiased (Figure 17.1b and d) whereas a tendency to be consistently different 
(for example too high or too low) reveals bias (Figure 17.1a and c). Lack of bias 
ensures the representativeness of a sample and is a fundamental requirement of 
statistical inference. In principle, lack of bias is achieved by sampling randomly 
from a population and in practice this becomes the main challenge in sample 
collection. Precision refers to the size of the deviations between repeated estimates 
of a given statistic. It describes the degree to which repeated estimates are clus-  
tered together: are they tightly bunched (Figure 17.1c and d) or widely dispersed 
(Figure 17.1a and b)? In real sampling problems, bias and precision cannot be 
observed directly because the value of the population parameters are unknown 
(otherwise there would be no need to sample) and, typically, only a single sample 
is collected. When sampling we should then aim to maximize precision and mini- 
mize bias so that we can have faith that the single sample we collect is accurate 
(Figure 17.1d). 

(d) (c) 

(b) (a) 



  
 

MINIMIZING BIAS: - 
 
Bias is introduced into a sample in one of three main ways. First, the actions of the 
person collecting the data may introduce operator bias. Two different individuals 
asked to sample the same population may produce samples that are not just 
different (this is expected), but systematically different from one another. For 
example, in approaching passers-by to interview on a city street, an operator may 
knowingly or inadvertently select individuals of a certain age, gender or ethnicity, 
thereby over-representing those groups in the sample. In collecting pebbles from   
a beach to determine their average size, an operator may tend to pick up pebbles 
that are more distinctive in colour and more easily seen. Since colour depends on 
lithology and lithology affects size, the sample could be unrepresentative of the 
range of sizes present. Operator bias is reduced by careful training and adherence 
to a standardized set of procedural rules consistent with the sampling method (see 
below). Thus, the street interviewer may be asked to minimize selection-based bias 
by approaching every tenth person who passes by and the pebble picker may be 
instructed to collect the pebble that lies beneath the metre marks on a measuring 
tape laid down on the beach surface. However, the propensity for humans to ignore 
rules or simply to make mistakes means that operator bias is difficult to remove 
entirely. Thus, looking down at the correct spot on the tape, the pebble picker can 
choose between that pebble that lies to the right or left of the tape and it is 
common for operators to preferentially select pebbles that fit comfortably in their 
hand, potentially ignoring large or small clasts and thereby biasing the sample (see 
Marcus et al., 1995 for a fuller discussion of this case). Additional procedural 
rules can be made to try to minimize such errors, but ultimately it may be difficult 
to eradicate them entirely. The potential for operator bias increases with the 
number of operators involved so that minimizing the number of operators helps to 
reduce this source of inaccuracy. 

Second, bias can be introduced by faulty or misused measurement devices that 
systematically misrepresent the characteristic of interest – note that this is differ- 
ent from non-systematic measurement error discussed below. This is fairly clear 
in the case of instruments that measure some chemical, physical or biological 
property and have the potential to be mis-calibrated or broken. Mis-calibration 
is a problem because many measurement devices do not measure the property of 
interest directly but via some more easily assessed quality that is quantitatively 
related to the target property. For example, stream velocity is routinely measured 
using devices that generate a small magnetic field in the flowing water and detect 
changes in the electrical current that is produced as water flows through it. The 
current is proportional to the water’s velocity, so that velocity can be determined 
by measuring the output current. However, care must be taken to correctly cali- 
brate and set-up such instruments to ensure that no systematic error produces 
consistently deviant velocity estimates. In the widest sense, a question on a ques- 
tionnaire, for example, is also a type of measurement device that can return a 
biased response by asking leading or biased questions (see Chapter 6). 

Third, and perhaps most commonly, bias can be introduced during the design 
of the sampling programme, particularly poor definition of the population, or 



  
 

choice of an inappropriate sampling method (the method by which individual 
sample items are drawn from the population). In geographical research the content 
of the population is apt to vary in space, in time and with the scale of interest, 
often in a systematic way (see Chapter 24). Unfortunately, this means that it is 
relatively easy to collect a sample that is not representative of the intended popu- 
lation (these issues are discussed at length below). 

 

MAXIMIZING PRECISION AND MINIMIZING NON-
SYSTEMATIC MEASUREMENT ERRORS: - 

 
Precision is largely a function of three things: the number of observations that 
make up a sample; the heterogeneity (variability) of the characteristic of interest 
within the population; and non-systematic errors that arise from the technical 
limitations of the measuring procedure. We shall return to the first two below, 
suffice to say here that the larger the sample size and lower the population hetero- 
geneity, the more precise sample estimates will be. 

Measurement errors, sometimes called pure errors, exist in all measurement 
operations because of technical limitations within the measuring system (the 
people and instruments involved). These are the irreducible errors that one has to 
be willing to accept in making any set of observations. Wherever possible, every 
effort should be made to minimize them and, of course, one must endeavour to 
ensure that the errors are free of bias. A brief example from geomorphology illus- 
trates several relevant issues. 

In the field, we can use an instrument called a total station to survey topography – for 
example, exposed gravel bars in an alpine river channel. The instrument is set up at 
a base station and measures distances, declinations from horizontal and directional 
angles to survey points across the bar surfaces. A target prism attached to a pole of 
known length is used to mark each survey position and its reflective properties 
allow distance and angle measurements to be made to it. These measurements are 
used with simple trigonometry to derive the elevation of each point and its position 
within a Cartesian coordinate system. The instrument measures declinations from 
horizontal with an accuracy of 5 seconds (where 1 second is 1/3600th of a degree), 
and distances of over 1 km with an accuracy of 3 mm. This kind of instrument   
is expensive and the measurements it makes are incredibly refined. Nevertheless, a 
number of measurement errors can be identified: 

 

 As indicated by the manufacturer’s specifications, repeated measurements of 
exactly the same target position return declination values that vary by as much 
as 5 seconds either side of the true value. In practice this error is very small, 
introducing a deviation of no more than 5 mm into the calculation of the 
elevation of a position 1 km away.

 Holding the target pole still, especially in cold, windy, weather is difficult. Despite 
every effort it is common for the target to move a few millimetres back and forth 
over a period of seconds. In turn, repeated measurements with the pole in the 
same position will yield very slightly different distance estimates.



  
 

 The survey aims to characterize bar topography but our measurements are 
affected by the smaller scale, gravelly surface texture of the topography being 
surveyed. Thus, choosing to place the target pole 1 cm to the left or 1 cm to the 
right of a particular spot can mean measuring the elevation of a hole between 
two pebbles or the elevation of the top of a pebble, in which case our estimate 
of bar elevation at that position can vary by tens of millimetres.

 

In practice, the first two sources of error are of little concern because they 
introduce only a very small amount of uncertainty into the results. They could     
be reduced further, for example, by moving the base station closer to the survey 
positions and using a tripod rather than a cold assistant to hold the target pole.   
The third error is more worrying because it is slightly larger.  However, there is   no 
bias involved because the assistant selecting each target position is instructed to 
place the pole randomly rather than, for example, consistently selecting pebble 
tops. This ensures that while individual points may be a few centimetres higher or 
lower than the average bed elevation in their vicinity, the overall surveyed surface 
is neither consistently above, nor consistently below the average. Most impor- 
tantly, all of the errors combined are very small relative to the variations in bar 
topography that we aim to characterize (millimetres compared with metres). This 
means that we can be confident that what little uncertainty the errors do intro-  
duce does not affect our ability to describe the overall shape of the bar surfaces. 
Clearly, this kind of decision-making is dependent on the job at hand, its aims and 
whether or not the overall precision achieved is sufficient to meet the objectives. 
Making such a decision always depends on appreciating the measurement errors 
involved and, therefore, that every effort should be made to characterize them. 

An alternative example from ecology illustrates how small amounts of impreci- 
sion can be important and can lead to scientific misunderstanding. It was recently 
reported that, in addition to growing longer as they grow older, Galapagos marine 
iguanas shrink during periods of reduced food availability, for example in response 
to major wet episodes like El Niño climatic events (Wikelski and Thom, 2000). 
These arguments were based on catch and release studies in which many individu- 
ally identifiable animals were periodically recaptured and measured over a number 
of years. Shrinkage involved more than simply losing weight, with animals becom- 
ing shorter by up to 20 per cent, possibly by bone absorption. This ‘bidirectional’ 
growth phenomena are highly unusual, so several researchers set out to see whether 
it was present in other types of reptile, including snakes. Examination of a large 
catch and release dataset for 16 species of West African snakes revealed shrinkage 
in up to 6 per cent of cases for some species (Luiselli, 2005). However, careful 
examination of these data and the measurement errors within them revealed that 
the proportion of shrinkage cases was strongly correlated with the ‘measurability’ 
of different spe- cies. Large, vigorous, aggressive and highly venomous snakes 
are understandably more difficult to measure than smaller, docile, non-biting, non-
poisonous snakes and there was a clear correlation in the dataset between greater 
handling difficulty and a higher incidence of apparent shrinkage. The 
implication of this is that shrinkage is not real, but an artefact of measurement 
error, and Luiselli (2005) concludes that snakes do not shrink but that snakes 
which are difficult to handle have a higher 



  
 

probability of being measured incorrectly so that there is a greater probability that 
they will appear to shrink (either because their length was overestimated to begin 
with or underestimated during a subsequent measurement). Although the individ- 
ual measurement errors are unbiased (measurements are equally likely to be too 
long or too short) they are imprecise and irreducible, in the sense that it would take 
substantially more effort than it is feasible to expend to obtain more accurate meas- 
urements. This lack of precision is important in this case because it could have led to 
unreasonable conclusions (snakes shrink) if it had not been for the additional, care- 
ful analysis. This example highlights the importance of always making every effort 
to understand and characterize measurement errors during a sampling campaign. 

 
 
DESIGNING A SAMPLING PROGRAMME: - 

 
In any project there are two main controls on the design of the sampling pro- 
gramme: the research aims and the resources available (time, money, person 
power). While the research objectives should drive the sampling design, more 
often than not it is resource issues that limit the sampling programme, and com- 
promises have to be made. Two key issues are the definition of the population of 
interest and the choice of sampling method. 

 
DEFINING THE TARGET POPULATION: - 

 
Defining the target population is a critical step, and begins with a clear definition 
of the unit of study (the items about which generalizations are to be made and that 
will be sampled). In social geography this might be an individual, a household, or 
an organization. In fluvial geomorphology it might be a channel cross-section, a 
bar, a hydrological link or a river basin. One of the things that makes geography 
such a fascinating discipline and makes sampling necessary is that the character   
of these units and therefore the content of the population is apt to vary, often 
systematically, in space, time and with the scale of interest. The population must 
be defined with this heterogeneity in mind, while at once satisfying the needs of 
the research aims and working within resource limitations. Defining the popula- 
tion is then an iterative process in which several questions are asked: How do the 
population characteristics of interest vary spatially and temporally? Which varia- 
tions are important for the study and which are not? How can important sources   
of variation be included and unimportant sources of variation excluded? Can the 
research aims be modified to accommodate practical difficulties? Answering these 
questions depends on careful investigation of published research, consideration of 
what one might reasonably expect and a clear understanding of the research aims. 
In turn, the spatial and temporal character of the intended population should be 
stated and used to guide the design of the sampling programme. 

Failing to accommodate temporal and spatial variability, by targeting too narrow 
a slice of the possible population, will produce a sample that is unrepresentative. 
For example, questioning households in only one enumeration district about 
them 



  
 

leisure activities are unlikely to yield results that are applicable to the city as a 
whole because one district is unlikely to encapsulate the range of economic, 
ethnic and age-related factors that influence use of leisure time across the city. 
Similarly, sam- pling suspended sediment concentration in a stream only during 
the rising limb of a flood is likely to yield an average value that is too high for 
the flood as a whole because of temporal variations in sediment availability over 
the course of the event. Equally, it is possible to target too much of the possible 
population in terms of its spatial extent, temporal boundaries or internal 
structures. This not only spreads precious resources thinly with implications for 
sample precision (see below), but may also add sources of variability that are 
not of direct interest and that obtuse ate or dilute critical information. Thus, it is 
often necessary to exclude sources of variability from a sampling programme 
and focus attention on particular objects, places, times or patterns. 

 
CHOICE OF SAMPLING METHOD: - 

 
Having clarified the spatial, temporal and structural dimensions of the target popu- 
lation, the next problem is to determine the best way of sampling from this target 
population. A variety of sampling methods are used by geographers and fall into 
two basic groups: non-probability methods and probability-based methods. Non- 
probability methods cannot be used to make statistical inferences about the popu- 
lation from which they are drawn. In choosing to adopt non-probability methods 
one must therefore accept that statistically rigorous representativeness is not a pri- 
mary issue in the research design (which may be the case, for example, in some 
research utilizing case studies). If the intention is to make generalizations about a 
larger population then non-probability methods should only be used with extreme 
caution and it is in this context that such methods are briefly reviewed here. 

In accessibility sampling, units are selected on the basis of convenience, such that 
one selects the most accessible units from the population. Such samples are likely 
to yield a biased sample. An example from biogeography illustrates the potentially 
serious consequences if this sampling flaw remains unrecognized. Reddy and 
Dávalos (2003) examined the spatial distribution of 3,504 sites in sub-Saharan 
Africa where passerine (perching) bird species were observed between the 1800s 
and 1970. Datasets of animal distributions like this, compiled in a large number of 
studies over many years, are important because they provide information over large 
areas that are used to define biodiversity hotspots and priority locations for conser- 
vation. What Reddy and Dávalos (2003) found, however, was that the location of 
sampling was strongly influenced by accessibility, with sampling sites concentrated 
in a non-random pattern close to cities, roads and rivers (Figure 17.2). The use of 
these data to identify conservation priorities is, therefore, problematic because the 
information is biased. It may be that some of the apparent hotspots targeted for 
conservation are less rich in species than other locations that are less accessible (a 
long way from roads, rivers and cities) where little or no information exists. The 
implications for conservation biogeography are that greater effort is required to 
collect information in less accessible locations and to develop methods for correcting 
accessibility bias where such fieldwork is impracticable. 



  
 

 

 
 

Figure 17.2 Map of sub-Saharan Africa showing approximately 3,504 locations where sampling has been 
conducted for passerine birds between the 1800s and 1970 (light grey dots). Major rivers (dark grey 
lines) and cities (large black dots) are also shown. In many regions, sampling locations tend to be 
located relatively close to cities and rivers; a pattern that is confirmed using formal testing.This 
illustrates accessibility bias in the selection of sampling sites.That is, sites close to rivers and cities are 
over-represented because they are relatively easy to access. See Reddy and Davalos (2003) for a full 
discussion and details of the data sources. 

In judgmental (also referred to as purposive) sampling, units are selected sub- 
ejectively by the researcher on the basis of prior experience. This is problematic 
because the researcher’s previous experience may be limited and his or her own 
prejudices, derived from his or her expectations and viewpoint, become an integral 
part of the selection process. Even if, by chance or skill, a judgmental approach 
yields an unbiased sample, it is difficult to prove that this is the case and there- 
fore difficult to convince critics of the value of any generalizations that are made. 
Quota sampling aims to be more representative by attempting to produce a sample 
that replicates the general structure of the population. Predefined quotas based on 
factors like age, gender and class are filled, thereby imposing some useful control 
on the selection of units, but the choice of individual items within each quota 
group is still subjective. Kitchin and Tate (2000) suggest that this method can yield 



  
 

representative samples but should only be used in situations where prior work has 
shown this to be the case. 

In contrast, probability-based sampling methods aim to preclude bias and pro- 
duce representative samples. Their common characteristic is that the sampling 
units are selected by chance and the probability of any unit being selected can be 
determined. Probability-based methods must be used if one intends to use infer- 
ential statistics to generalize from the sample to the population. These methods 
require that a sampling frame exists or can be developed. A sampling frame is         
a list or other representation of the target population from which units can be 
drawn (for example an electoral roll, a catalogue of discharge gauging stations, an 
aerial photograph, a map, or a street directory). 

Table 17.1 illustrates several probability-based methods. The two basic meth- 
ods are simple random and systematic sampling. Their common feature is that 
there is an equal probability of selecting each and every unit within the sampling 
frame. Two issues are worth considering when adopting these methods. First, if 
systematic sampling is applied within a sampling frame that includes a repetitive 
structure and the sampling interval that is chosen coincides with that structure, 
then bias will be introduced. For example, many alluvial rivers exhibit repetitive 
pool-riffle-bar morphology in which the spacing between units is typically five to 
seven times the channel width. If water depth or grain size or stream velocity are 
systematically sampled using a similar interval, it is possible that measurements 
will be biased toward the characteristics of pools or riffles. Second, with a target 
population where the characteristic of interest is heterogeneous but also exhibits 
some internal pattern, it is important to obtain uniform coverage of the sampling 
frame without any gaps. Simple random sampling may not do this as well as 
systematic sampling because it is possible for sampled units to be unevenly dis- 
tributed, as illustrated for the case of river sediment characterization by Wolcott 
and Church (1991). 

In a stratified sample a number of homogeneous sub-groups or strata, differ- 
entiated by some relevant characteristic, are recognized within the population. In 
contrast to the simple and systematic methods, the probability of selecting an indi- 
vidual unit from the sampling frame varies, depending upon the stratum that the 
unit belongs to. Three common reasons for utilizing stratified sampling illustrate 
its value. First, it can be used to ensure that the number of units drawn from dis- 
tinctive strata is in proportion to their true size in the population. This is known 
as proportionate stratified sampling. Simple random and systematic sampling will 
achieve this by default if the sampling frame is appropriate, comprehensive and 
accurate, which should be the case if the sampling frame is developed for the 
research project. However, it is not uncommon for the sampling frame to be 
obtained from a source that compiled the frame for purposes other than those for 
which it is now intended. Such frames may be biased in favour of one or other 
strata. Similarly, instrument malfunction at a particular time or place, or non- 
responses to questionnaire surveys may yield a sample that is known to be biased. 
In either case, if the true population proportions are known then each stratum 
can be randomly sub-sampled in those proportions to obtain an unbiased 
sample. Second, it may be uneconomical or unfeasible to sample strata of very 
different 



 

Table 17.1 Basic sampling methods 
 

 Description Physical illustration Human illustration 

  Sediment size 
Aim: ascertain average size of the 
sediment particles on a river bar. 
Population: all particles on the river bar. 
Unit: a sediment particle. 
Frame: a map of the bar surface located 
in an arbitrary cartesian space. 
Measurement: using a size template. 

Street safety 
Aim: ascertain views of university students on 
campus safety. 
Population: all students at the university. 
Unit: an individual student. 
Frame: a list of students and their addresses. 
Measurement: by questionnaire. 

a) Simple Random Within the sampling frame each 
unit is assigned a unique number 
or position. Numbers and thence 
units are selected at random 
from the sampling frame. 

A random number generator is used 
to pick x and y coordinates.These 
coordinates locate particles for 
measurement. 

Each student on the list is assigned a unique 
number. A random number generator is used to 
pick numbers and the corresponding people are 
sent questionnaires. 

b) Systematic A sampling interval is defined 
(e.g. every 10 m, every fourth 
individual, every 60th second). 
The first unit is randomly 
selected as in (a) and subsequent 
units are selected systematically 
according to the sampling interval. 

The bar is approximately 40 m2 and a 
sample of 100 is required. A 
sampling interval of 2 m is defined. 
From an arbitrary origin, a grid of 2 m 
squares is projected onto the sampling 
frame map. Grid intersections locate 
particles for measurement. 

The list contains 500 names and a sample of 
100 students is required. An interval of 4 units is 
defined. One name is randomly selected as 
above. Subsequently, every fourth student is 
selected. If the end of the list is reached, 
counting continues at the beginning. 

c) Stratified Mutually exclusive sub-groups 
(strata) are identified and 
sampled randomly or 
systematically in one of two ways: 
Proportionate: each stratum is 
sampled in proportion to its true 
population proportion.This is 
necessary if the sampling frame 
is inadequate. 
Disproportionate: an equal number 
of units are sampled from each 
stratum irrespective of their true 
population proportion.This is 
necessary when comparisons 
between strata are required. 

Four strata corresponding to distinct 
facies (areas of homogeneous 
sedimentary character) are evident. 
In this case the frame is adequate and 
there have been no measurement 
problems. Simple random and 
systematic sampling are adequate. 
Suppose one wishes to compare size in 
facies 1 (a small area) and facies 4 
(a larger area). An equal number of 
particles should be selected from each. 
Thus, disproportionate sampling is 
necessary (note this will yield a biased 
sample of the population so weighting 
is required). 

It is suspected that gender is an important 
factor in determining views on campus safety. 
Suppose the supplied list is for students 
in only one faculty. Different faculties typically 
exhibit distinct gender distributions. In this case 
the list is not representative of gender 
distribution across the university. Proportionate 
sampling is required: stratify (male, female) and 
randomly sample in each group to obtain 
numbers that yield the female:male ratio for the 
university as a whole. 

 
 
 

. 





  
 

sizes in proportion to their size (total area, number of units, etc.). A more efficient 
method is often to collect a random sample of common size within each stratum, 
then weight the statistics obtained for each strata according to the stratum’s size 
within the population, and combine them appropriately in order to generate pop- 
ulation estimates. Sampling the same number of units from strata of different size 
is referred to as disproportionate stratified sampling. Third, individual research 
projects may ask questions about the strata, often requiring that comparisons are 
made between them. In this case it is necessary to obtain equally precise samples 
for each stratum, which means selecting a similar number of units from each. 
Simple random or systematic sampling does not do this, but rather selects a 
number of units from each stratum that is in proportion to the stratum’s size. 
With disproportionate stratified sampling this problem is overcome by randomly 
selecting the same number of units from each stratum, irrespective of their true 
relative sizes. In using this method, it is important to remember that as far as 
the population as a whole is concerned, one has created a biased sample so that if 
esti- mates of population parameters are required, strata estimates must be 
combined using appropriate weighting techniques. 

A final example of a probability-based method is the multi-stage or hierarchi- 
cal sample in which the sample is selected in several stages that usually relate to 
spatial or temporal scale. For example, if the campus safety study (Table 17.1) was 
extended to a global scale the aim might be to sample 100 universities from around 
the world. First, ten countries might be randomly selected, then within each coun- 
try five cities, and ultimately within each city, two universities. Multi-stage surveys 
are an efficient method when faced with a very large population in space or time. 

Choosing between these various probability-based methods (and the many 
others that have been suggested) requires some prior knowledge or reasoned 
judgement concerning any spatial or temporal structures within the population, 
a thorough understanding of the sampling frame and a clear set of aims. Without 
a good appreciation of these it is possible to inadvertently choose a sampling 
method that systematically favours some parts of the population over others, in 
which case the characteristics of interest are not properly represented. This basic 
point has been stressed by several authors who have considered the specific details 
of applying standard sampling methods to spatial data (e.g. Berry and Baker, 
1968; Harvey, 1969). Haining (1990) suggests that systematic sampling is supe- 
rior where the underlying spatial variation is random. Wolcott and Church (1991) 
find that a particular combination of grid and random sampling known as strati- 
fied systematic unaligned sampling (cf. Smartt and Grainger, 1974; Taylor, 1977) 
performs well for areally structured data. They point out that it avoids the 
primary problems with each of random and systematic sampling: the possibility 
that random sampling is unevenly distributed thereby missing small spatial struc- 
tures, or that the data contain spatial structures that have the same spacing as the 
grid spacing, thereby introducing bias. 

In summary, non-probability methods are less desirable than their probability- 
based counterparts and certain probability methods are more appropriate than 
others in certain circumstances. Nevertheless, it is important to recognize that the 
vagaries of empirical research often make meeting the ideal difficult (if not impos- 
sible) with the result that the target population and the sampled population differ 



  
 

(Krumbein and Graybill, 1965). This might be because the resources necessary 
are not forthcoming. It may be that accurate information about the population 
is not available to guide programme design or that there are unknown and hid- 
den sources of variation within the population. It may be that an appropriate 
sampling frame does not exist or that we are forced to accept an accessibility 
sample because only certain people will talk with us or only certain places can be 
reached. In cases like these it is incumbent on the researcher to make it very clear 
exactly how sampling was conducted and for him or her to interpret his or her 
results in light of suspected sampling weaknesses. 

 
ANALYTICAL REQUIREMENTS: - 

Finally, in designing a sampling programme it is important to think ahead to the 
analytical stage of the research and identify any restrictions or requirements that 
the intended analysis imposes on the sampling strategy. For example, it may be 
that the inferential statistics used require a minimum number of samples or that 
a laboratory machine requires individual samples to be of a particular mass. It 
is certainly the case that any hypothesis being tested will require the data to be 
collected in a particular manner. In experimental and some observational 
projects, the experimental design will be an integral part of designing the correct 
sampling programme. It is therefore crucial to identify the analytical procedures 
that will be used in the laboratory or at a desk before setting out with clipboard 
or shovel. 

 
 
STATISTICAL INFERENCE:- 

 
We have already noted that geographical enquiry must deal with uncertainties. 
Hicks (1982: 15) defines inferential statistics as ‘a tool for decision making in the 
light of uncertainty’, and geographers have certainly found inferential statistics    
to be a valuable tool. Inferential statistics use sample data to make probabilistic 
statements about the population from which they are drawn. Statements can be 
made about the characteristics of the population, which is referred to as param- 
eter estimation, and also whether a particular supposition about the population is 
true or false, which is referred to as hypothesis or significance testing. 

Numerous text books are available that explain the principles and practical appli- 
cation of the great array of inferential statistical techniques used by geographers. 
These include specifically spatial techniques that extend statistical analysis to the 
examination of patterns in space (e.g. Norcliffe, 1977; Williams, 1984; Haining, 
1990; Shaw and Wheeler, 1994; Fotheringham et al., 2000; Rogerson, 2006). Particu- 
lar attention should always be paid to the data assumptions that these procedures 
have and whether so-called parametric or non-parametric techniques are most 
appropriate. There are also some specifically geographical issues to be aware of too, 
particularly spatial autocorrelation. This refers to the propensity for the value of a 
variable at one location to be related to the value of that same variable in a nearby 
location. It is problematic, because inferential statistical techniques often require that 



  
 

each sample measurement is independent of all others. In spatial data, autocorrela- 
tion is common (otherwise location would not matter) such that the performance 
of standard methods may be degraded and there is the potential for misinterpreta- 
tion. It is possible to measure the significance of spatial autocorrelation in a data 
set (see, for example, Kitchen and Tate, 2000) and standard inferential procedures 
can be adapted to minimize its impact (see, for example, Cliff and Ord, 1975; 
Fotheringham et al., 2000; Rogerson, 2006). Chapter 26 provides alternative 
means of describing and exploring spatial associations. 

There are many introductory texts that can provide a detailed step-by-step intro- 
duction to inferential statistical methods. The aims of this section are limited to 
explaining the apparent incongruity of statistical inference – how can one make 
statements about a population based on a single sample drawn from it, even though 
one knows that no two samples would ever be exactly the same? – an apparent leap 
of faith that brings to mind Jean Baudrillard’s comment that, ‘Like dreams, statis- 
tics are a form of wish fulfilment’ (Baudrillard, 1990: 147). The simple answer is 
that, although we know our sample to be unique, statistical theory allows us to 
assess the reliability of sample estimates (called statistics) such as the sample mean. 
It is, therefore, possible to ascertain the likely difference between a sample statistic 
and the equivalent population parameter without knowing the value of the popu- 
lation parameter. In turn, the differences between sample statistics, for example 
mean values from different groups, can be compared with one another to test the 
hypothesis that they come from different populations. The following exposition of 
these ideas is necessarily very brief and non-technical and focuses on ascertaining 
reliability rather than hypothesis testing. The reader is directed to one of the above 
texts (Shaw and Wheeler, 1994; Rogerson, 2006) for a fuller account. 

 
PROBABILITY AND THE ‘NORMAL’ DISTRIBUTION: - 

 
A basic understanding of probability distributions is necessary before continuing. 
A probability distribution describes the changing frequency with which particular 
values of a variable of interest are measured. It is commonly visualized as a histo- 
gram in which the ordinate shows the number of occurrences (the frequency) with 
which groups of values occur. For example, one can describe the frequency dis- 
tribution of beach pebble sizes in a 100-pebble sample by indicating the number 
of particles in each of several consecutive 10 mm grain-size classes. Frequencies 
can be represented as absolute numbers or as relative proportions, in which case 
they represent the empirical probabilities of measuring a value in each class. Thus, 
if 35 of the 100 pebbles were found to be between 40 and 50mm in diameter, it 
follows that there was a probability of 0.35 (a 35 per cent chance) of finding a 
pebble in that size range on the beach. Probability distributions for measured phe- 
nomena take a wide variety of forms, but a typical situation is that values close to 
the mean are common and those further away are proportionately less common. 
Specifically, many phenomena exhibit an approximately ‘normal’ distribution 
(sometimes referred to as a Gaussian distribution after the mathematician who 
first defined it) with its characteristic bell-shaped curve, centred on the mean. 



  
 

The properties of the normal distribution, and in turn empirical probability dis- 
tributions that approximate it, are at the heart of basic statistical inference. Any 
normal distribution can be described in a standardized form in which raw empiri- 
cal data are transformed into so-called z-values. These numbers express changes in 
the measured values as multiples of the data’s standard deviation. In standardized 
form the mean of the distribution is zero and the standard deviation of the distri- 
bution is 1.0. Because the mathematical form of the standardized distribution is 
known, the probabilities of observations falling within any given range of z values 
can be calculated and most statistical text books contain tables that give the prob- 
ability associated with specific z ranges. Thus, there is a 0.68 probability (0.34 
either side of the mean) of a standardized observed value falling in the range z 
 1.0 to z  1.0; i.e. within one standard deviation of the mean. Similarly, 95.45 
per cent of observations will be within two standard deviations and 99.73 per cent 
within three standard deviations of the mean. This is true of any normally dis- 
tributed variable which means that we can apply such reasoning to a wide variety 
of phenomena in physical and human geography. By using such tables in reverse, 
the values of z that are associated with selected probabilities can be ascertained. 
For example, 95 per cent of the values (47.5 per cent either side of the mean) in a 
normally distributed phenomenon will have z values that are in the range 1.96. 
Equally, sampled values with z values outside this range have a probability of being 
observed 5 per cent of the time or less. 

 
CONFIDENCE STATEMENTS ABOUT SAMPLE STATISTICS:- 
 

If repeated samples are drawn from the same population and in each case the 
mean is calculated, the mean values will vary from sample to sample but will tend 
to cluster around the true mean of the population. Such a collection of sample 
means (or indeed any other sample statistic) is called a sampling distribution. A 
piece of mathematical theory called the Central Limit Theorem (CLT) proves that 
sampling distributions are normal with a mean value equal to the value of the true 
population parameter (e.g. the true population mean) and that this holds irrespec- 
tive of the population distribution. Thus, even for a phenomenon that does not 
exhibit a normal distribution, the sampling distribution of the mean is normal. 
The standard deviation of a sampling distribution is known as the standard error 
and it has the same general properties as the standard deviation of any normal dis- 
tribution so that, for example, 95 per cent of the sampling distribution lies within 
1.96 standard errors of the true population mean. 

Standard errors can be determined empirically by repeated sampling of a given 
population, but this is rarely plausible. It is of significant consequence, then, that 
standard errors can be calculated on the basis of collecting only a single sample. 
For example, the standard error of sample means (x) can be calculated as 

x   s / n 

where s is the standard deviation determined from a single sample and n is sam- 
ple size. Armed with this value and our knowledge of the normal distribution it is 



  
 

possible to make statements about the reliability of the sample mean; that is, to say 
how confident we are that the true population mean is within a given interval about 
the sample mean. Remembering that the probabilities in a z table indicate that 95   
per cent of a normal distribution lies within 1.96 standard deviations of the mean, we 
can say that there is a 95 per cent chance that the sample mean lies within 1.96 
standard errors of the true population mean. This is equivalent to saying that there    
is a 95 per cent chance that the population mean lies within 1.96 standard errors of 
the sample mean. 

For a given case, the interval can be specified in the original data units and is 
known as a confidence interval. So, for example, for a sample of pebble diam- 
eters with a standard deviation of 20 mm and n  100, there is a 95 per cent 
chance that the sample mean lies within 1.96  x  1.96 x (20/100)  3.9 mm 
of the population mean. This is commonly interpreted as meaning that in 
95 samples out of 100 the sample mean would lie within 3.9 mm of the popu- 
lation mean, although more precisely it says that if 100 samples were used to 
construct 100 confidence intervals the true population mean would be included 
within 95 of them. Confidence intervals for any probability can be constructed 
using the appropriate z value, so that at 0.99 probability the confidence intervals 
in the above example are 2.58  (20/100)  5.2 mm. An important caveat for 
the reader to investigate further is that while large samples always have normal 
sampling distributions, irrespective of the population distribution, small samples 
(n  30) have distorted distributions with a form that is a little different from 
‘normal’. Small samples tend to yield statistics that are distributed according to 
the t-distribution, sometimes known as ‘Student’s t-distribution’. This has similar 
properties to the normal distribution and it is used in the same way to determine 
the reliability of sample estimates, except that probability values from published 
t-tables, rather than z-tables, are used. 

The CLT and standard errors are so important because they allow us to 
make rigorous statements about the reliability of the statistics we derive from 
sample data – that is, to accurately quantify the uncertainty that is inherent in 
a sample. In turn, they provide a basis for making rigorous comparisons 
between samples and thence for testing hypotheses. Just as confidence inter- 
vals are used in assessing reliability, so-called significance levels, denoted by 
, are used to attach probability statements to the decisions made in hypoth-  
esis testing. There is always the chance that a given decision is incorrect and 
levels of significance define the probability that one incorrectly rejects a true 
hypothesis. Significance levels are set by the researcher as part of the testing 
procedure. Usually, we are only willing to accept low-levels of error, so signifi- 
cance levels are set to 5 or 1 per cent, though smaller, more stringent values can be 
used. The important point to make at the end of this section is that statisti- cal 
inference, beyond the mathematical formulation of the various procedures and 
tests, involves commonplace ideas of confidence and significance not cer- tainty. 
It allows us to attach probability statements to estimates and decisions but 
crucially, statistical techniques do not provide binary, ‘black and white’, yes and 
no answers. It is always the responsibility of the researcher to choose levels of 
confidence and significance, and to interpret results thoughtfully in light of 
these choices. 
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Figure 17.3 The relation between estimate precision, sample size and sampling resources 
 

 
SAMPLE SIZE: - 

 
A frequently asked question is, ‘How big should my sample be?’ The answer 
reflects a compromise between the desired precision of the sample estimates and 
the resources available, because maximizing precision and thence the significance 
that can be attached to statistical inferences (see above) requires the collection of 
large samples, but also demands greater resource expenditure. 

In general, precision improves with sample size in a curvilinear fashion. As 
sample size increases precision improves rapidly to begin with but then more 
slowly (Figure 17.3). In this case, we can imagine that in any sampling procedure 
there is an optimal sample size corresponding to that region where the curve in 
Figure 17.3 begins to flatten out. Beyond this point additional gains in precision 
are small and do not warrant the additional sampling effort (resources) required. 
Before this point, the sample size is too small to yield reasonable estimates of the 
population characteristics and it is worth expending small amounts of effort to 
obtain significantly better estimates. Ideally, we want to obtain samples of a size 
somewhere in this optimal zone. Several ways of doing this are discussed below, 
but it is first worth noting two cases where the option of seeking the optimal 
solution does not arise. 

First, a common situation is that the resources needed to collect a sample of    
the ideal size are simply not available so that low sample precision is inevitable. 
Similarly, where secondary rather than primary data is being used, the second-   
ary data may be less voluminous than that desired. When designing a sampling 

Resource use 



  
 

programme it is always necessary to carefully consider the allocation of resources 
in light of this problem. It may be that sacrifices can be made in one part of the 
programme in order to improve precision elsewhere. For example, rather than 
obtaining low-precision estimates of water quality in twenty lakes, it may be 
advisable to seek quality estimates for five lakes, especially if the retained lakes 
are carefully selected to test one or more hypotheses. 

Second, it may be that a specified level of precision is required by the research 
aims in which case there may be no option but to collect inefficient, large samples. 
Work with legal or health implications often has an absolute level of precision that 
is required by the project objectives. A related issue that constrains sample size is 
the possibility that a particular physical or statistical technique used to analyse the 
sample data has sample size requirements. It is therefore important to know how 
your data will be analysed before the sampling programme is finalized. 

In any given study, the relation between sample size and precision is driven by 
the variability (heterogeneity) of the characteristic of interest within the popula- 
tion. For a given sample size, precision is worse in populations that exhibit greater 
spread or variability and the more heterogeneous a population, the greater the 
sample size required to obtain a given level of precision. 

Formulae exist for calculating the sample sizes needed to obtain specified levels 
of precision for a given statistic. For example, in the case of estimating the popu- 
lation mean , precision can be thought of as the error, , that we are willing to 
accept – that is, the acceptable difference between a sample mean, x and  (  
units).  is equivalent to half of a confidence interval and a confidence interval has 
length 2.(z.x), where x is the standard error of the mean and z is the tabled value 
associated with the chosen significance level . Thus, 

 
  z.x 

therefore: 
 

  z.(s / n) 

where s is the sample standard deviation, and 

n  (z2.s2) / 2
 

 
This gives the sample size n, needed to obtain an estimate of the mean that is within 
 units of the population mean with a 100. (1) per cent level of confidence. 

Similar formulae can be developed for estimating other statistics or for use in 
hypothesis testing. A device known as an Operating Characteristic Curve can also 
be used to determine optimal sample sizes in hypothesis testing. The operational 
problem with these methods is quite simply that usually we do not know the 
sample standard deviation beforehand. This can be overcome by a two-phase 
sampling procedure or by estimating the standard deviation from previously 
published work. An additional problem is that researchers seldom find it easy to 
define an acceptable error, . 



  
 

Empirical approaches to sample size determination may then be useful. As 
sample size increases from one, the value of any statistic will vary significantly 
as successive population values are added, but will gradually achieve a degree 
of stability. This indicates that the sample has incorporated most of the variance 
evident within the population (see again Figure 17.2). If it is possible to monitor 
the value of the statistic of interest as the sample is collected, sampling can be 
curtailed when values for successive n become relatively stable. This can be an 
especially effective method if the same type of sample is to be obtained from a 
number of strata or discrete sampling frames where it is anticipated that there is 
little change in the population variance between those strata or frames. A pilot 
exercise conducted in one case can then be used to inform sample size for the 
whole programme. For example, in the case of an insect survey consisting of 
many discrete quadrat samples where the aim is to examine variations in number 
of taxa present, it may be worthwhile to conduct a pilot exercise in which one 
monitors the changing number of taxa as the size of the quadrat is gradually 
increased. A graph can be plotted of area against number of taxa and the sta- 
bilization point will reveal the optimal quadrat size, to be utilized throughout 
the survey, for obtaining a reasonable estimate of taxa number (e.g. Chutter 
and Noble, 1966; Elliot, 1977: 128). More elaborate empirical methods can  
also be used to examine sample precision and identify optimal sample sizes, for 
example a technique called bootstrapping (e.g. Rice and Church, 1996), though 
these require very large data sets and the ability to invest resources in a significant 
pilot study. 

 
CONCLUSION: - 

A principal aim of most geographical research is to make useful generalizations 
that might help to model or otherwise understand better the uncertain human and 
physical words that are the geographer’s realm. Because it is usually impossible or 
impractical to observe all instances of variation, a smaller number of instances (the 
sample) are used, from which the ‘population’ characteristics can be estimated.  
Achieving this in a reliable and reproducible fashion is the basis of sampling theory 
and sampling design. 

Geographers recognize the value of both extensive statistical sampling and 
intensive ‘case-study’ sampling. A benefit of extensive sampling is that a set of 
techniques known as inferential statistics can be applied to make probabilistic 
statements about the population from which the sample is drawn. Sampling is 
therefore a powerful tool, but geographical research frequently engages with very 
heterogeneous phenomena that require careful sampling in order to maximize the 
accuracy of inferential conclusions. Careful design of the sampling programme is 
crucial and is driven by both the research aims and available resources. The over- 
all message is that sampling is a tool that most geographers need, but if research 
methodology aims to be as impartial and free of error as possible, sampling must 
be done thoughtfully and rigorously. 



  
 

 


